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We are computing more data, faster than we can manage.


Storage performance 
doubles in 45 months

40% annual increase


Storage and Computation Rates over Time


Ref: Rob Ross, Visualization and Parallel I/O at Extreme Scale, SciDAC ’08 

CPU performance 
doubles in 18 months

60% annual increase
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More than Peak FLOPS: disk I/O rate limits analysis 
capability. Data that is not stored can’t be analyzed.


Code Domain % 
Saved PI 

FLASH Astrophysics 10 Ricker 

Nek5000 CFD 1 Fischer 

CCSM Climate 1 Jacob 

GCRM Climate 10 Cram 

S3D Combustion 1-5 Bennett 

Percent Saved of Computed Data


Machine 
Storage 

B/W 
(GB/s) 

FLOPS 
(Pflop/s) 

Flops per byte 
stored 

LLNL BG/L 43 0.6 O(10 4) 

Jaguar XT4 42 0.3 O(10 4) 

Intrepid BG/P 50 0.6 O(10 4) 

Roadrunner 50 1.0 O(10 5) 

Jaguar XT5 42 1.4 O(10 5) 

Normalized Storage / Compute Metrics


Ref: CScADS Scientific Data Analysis &
 Visualization Workshop ‘09 

-The average flops per byte of parallel I/O 
disk access today is between 10,000 and 
100,000


-In 2001, this number was approximately 
500. Ref: John May, 2001.


-DOE science applications generate 
results at an average rate of 40 flops per 
byte of data. Ref: Murphy et al. ICS’05.


-Applications can only afford to save 
between 1-10% of what they compute.

-With postprocessing, what is not saved 
cannot be analyzed.
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write read analysis/vis sim view write read 

dataset images 

supercomputer vis cluster desktop 

Our Science Workflow Cannot Scale Indefinitely"

The increasing demands for analysis and visualization can be met by performing more 
analysis and visualization tasks directly on supercomputers traditionally reserved for 
simulation.


-Potential benefits:  Increased overall performance, reduced cost, tighter integration 
of analysis and visualization in computational science.

-Potential drawbacks:  Reduced per-core performance, increased load on computing 
resources, potential to crash computations.
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Parallel Volume Rendering


Pressure at time-step 1530


Angular momentum at 
time-step 1492


Volume rendering of shock wave 
formation in core-collapse supernova 
dataset, courtesy of John Blondin, NCSU. 
Structured grid of 11203 data elements, 5 
variables per cell.


Entropy at time-
step 1518


Angular momentum at 
time-step 1403


Entropy over 100 time-steps
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Parallel Volume Rendering Algorithm


Parallel Volume Rendering on the IBM Blue Gene/P. EGPGV’08. 

Parallel structure for volume 
rendering algorithm consists of 
3 stages performed in parallel
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Performance: Total and Component Time


Total frame time and individual
 component times.  Raw data format,
 11203, image size 16002.


The relative percentage of time in the stages of
 volume rendering as a function of system size.
 Large visualization is primarily dominated by data
 movement: I/O and communication.
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Performance: Large-scale Results


Scalability over a variety of data, image, and
 system sizes.  A number of performance
 points exist for each data size.


Grid Size 
Time-

step size 
(GB) 

Image 
size 
(px) 

# 
Procs 

Tot. 
time (s) % I/O Read B/W 

(GB/s) 

22403 42 20483 8K 51 96 0.9 

16K 43 97 1.0 

32K 35 96 1.3 

44803 335 40963 8K 316 96 1.1 

16K 272 97 1.3 

32K 220 96 1.6 
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Parallel Image Compositing


The final stage in sort-last parallel visualization algorithms:

1.  Partition data among processes

2.  Visualize local data

3.  Composite resulting images into one
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Direct-Send Optimization


Direct-send compositing time improved up to
 30X. 11203 data volume, 16002 image size.


End-to-End Study of Parallel Volume
 Rendering on the IBM Blue Gene/P. ICPP’09 

Usually in direct-send, n = m, but setting m 
< n can reduce contention when n is large. 
On average,  O(m * n1/3) total messages,  
can get down to O(n) if m = n2/3.


n = m


n = 32768

m = 2048
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Radix-k Compositing Algorithm


Radix-k: More parallel, managed contention, p does not need to be power of 2 


A Configurable Algorithm for Parallel Image-Compositing Applications. SC09 
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Radix-k Performance


Tested at 1, 2, 4, and 8 Mpix. 1 pixel = 4 floats (16 bytes per pixel)

40% improvement over binary swap at a variety of process counts. Left: p varies from 32 
to 1024 in steps of 32. Right: p continues from 1024 to 35,000 in steps of 1024. 
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Parallel Flow Visualization Algorithm


Parallel structure for flow visualization algorithm 
consists of iterations of particle tracing and 
transfer, followed by a rendering stage.
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Parallel Flow Visualization Algorithm


Plume dataset


Tornado dataset


Type IA supernova
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Looking Toward In Situ Analysis & Visualization


Pros


-  Reduced data movement


-  Access to every data byte


-  Native data structures


-  Native algorithms


-  Custom operations


-  Increased accuracy


Cons


-  Memory footprint


-  Application constraints


-  Increased complexity


-  Expanded / collaborative domain 

knowledge


Challenges to Address


-  Appropriate analysis / visualization applications


-  Programming model


-  Execution and use model




16 

Further Reading


Peterka, T., Goodell, D., Ross, R., Shen, H.-W., Thakur, R.: A Configurable Algorithm for Parallel Image
-Compositing Applications. Proceedings of SC09, Portland OR, November 2009.


Peterka, T., Yu, Hongfeng, Ross, R., Ma, K.-L., Latham, R.: End-to-End Study of Parallel Volume
 Rendering on the IBM Blue Gene/P.  Proceedings of ICPP’09, Vienna, Austria, September 2009.


Peterka, T., Ross, R. B., Shen, H.-W., Ma, K.-L., Kendall, W., Yu, H.: Parallel Visualization on Leadership
 Computing Resources. Journal of Physics: Conference Series SciDAC 2009, June 2009.


Peterka, T., Ross, R., Yu, H., Ma, K.-L., and Girado, Javier: Autostereoscopic Display of Large-Scale
 Scientific Visualization. Proceedings of IS&T / SPIE SD&A XX Conference, San Jose CA, January
 2009. 


Peterka, T., Ross, R., Yu, H., Ma, K.-L.: Assessing Improvements to the Parallel Volume Rendering
 Pipeline at Large Scale. SC08 Ultrascale Visualization Workshop, Austin TX, November 2008.


Ross, R. B., Peterka, T., Shen, H.-W., Hong, Y., Ma, K.-L., Yu, H., Moreland, K.: Parallel I/O and
 Visualization at Extreme Scale. Journal of Physics: Conference Series SciDAC 2008, July 2008.


Peterka, T., Yu, H., Ross, R., Ma, K.-L.: Parallel Volume Rendering on the IBM Blue Gene/P. Proceedings
 of Eurographics Symposium on Parallel Graphics and Visualization 2008 (EGPGV’08) Crete,
 Greece, April 2008.




Tom Peterka


tpeterka@mcs.anl.gov


Mathematics and Computer Science Division


www.ultravis.org 

Moving Analysis to the Data:

Scalable Visualization Using Simulation Resources


Acknowledgments:


Hongfeng Yu, Wes Kendall, Rob Latham, Dave Goodell, Kwan
-Liu Ma, Rob Ross, Han-Wei Shen, Rajeev Thakur


John Blondin, Tony Mezzacappa


Argonne and Oak Ridge Leadership Computing Facilities


US DOE SciDAC UltraVis Institute


SIAM Minisymposium

February 26, 2010 



